
Hunting birds

Yuki Koike

NADA Junior and Senior High School

8-5-1, Uozaki-Kitamachi, Higashinada-ku, Kobe-shi, Hyogo 658-0082, JAPAN

poteticalbee@gmail.com

Abstract Stack Smashing Protection (SSP) is one of the oldest and fundamental protections against

memory corruption exploits. Employing stack canaries to detect malicious corruption, SSP has proved

to make exploiting memory corruption bugs to be more difficult. Stack canaries verify if a buffer has

been overflown by checking the integrity of a value stored immediately after the buffer. Although some

papers presented some trivial methods in Linux to defeat stack canaries, they require certain function

pointers to be overwritten or only work in certain circumstances. Therefore, they are not so useful as a

versatile exploit technique in the present because they require rare configuration and environments that

are unlikely to be found in the real world. This paper proposes a new technique called ”Master Canary

Forging”, which provides practical use in terms of adaptability and feasibility for killing stack canaries

with no need for using other exploitation methods which modify other function pointers such as GOT

Overwrites or SEH Overwrites.

1 Introduction

Stack Smashing Protection (SSP) is a security

exploit mitigation that compilers use to detect dur-

ing runtime whether a stack frame has been over-

written and to terminate the process if it has in

order to mitigate the possibility of arbitrary execu-

tion of code by an attacker. The idea and first im-

plementation of SSP was released in 1998 and has

been modified and improved on ever since. A stack

based buffer overflow is a vulnerability that allows

an attacker to write passed the intended memory

space allocated for a variable into the area on a

call stack. For programs compiled with SSP, the

attacker would have to overwrite pass the canary

before reaching the frame pointer and return ad-

dress on the call stack. It could be said that this

is the most straightforward and easiest way to ex-

ploit memory corruption bugs since it is possible to

directly tamper with call stacks, which are respon-

sible for the program flow. This is the motivation

for creating a method of bypassing these canary

checks.

A stack canary can either be a random value

hard to predict value that should not be able

to be guessed or brute-forced, or a terminator

value that has been carefully selected to prevent

overwriting any data passed it. If the random

value would be able to be predicted or if the

attacker could write pass the terminator value,

then the attacker would be able to successfully

overwrite the call stack and take control of the

program. Therefore, it is necessary make sure



that the random value is truly unpredictable and

that the terminator value is unable to be written

passed. Currently, stack canaries can be separated

into three major groups: a) terminator, b) ran-

dom, and c) random XOR. Most modern Linux

distributions use random canaries. In the current

glibc implementation, dl setup stack chk guard in

ld.so stores random values generated from random

devices such as /dev/random or /dev/urandom in

the fixed locations of the TLS segments or the

BSS segments when a program is running. These

values are called master canaries. Programs are

compiled to be able to read these master canaries

from the designated places in accordance with the

design of glibc. Thus, different random values are

generated every time the program is launched.

These values are taken from the master canaries

and placed after the allocated program variables

and before the base pointer and return address

when a function is called. When the function

ends, the canary value is then checked to make

sure that it matches with the master canary to

find out that it has not been changed.

There are mainly two methods to bypass stack

canaries with stack based buffer overflows: a)

completely avoid the canary validation by abusing

other function pointers and b) bypassing the

canary validation by somehow overwriting it with

the correct value. The techniques covered in [1],

[2], and [3] give examples of a) and b). Master

Canary Forging, described in this paper, does not

deal with the first type and, as the name suggests,

corrupts the master canaries. This is opposed to

the techniques explained in [1] and [2], that take

the opposite approach by finding out the values

of the master canaries and overwriting the canary

values to match them. This attack would be

much more difficult if random XOR canaries were

used, as they are in Windows, as a vulnerability

that leaks stack address would also be necessary.

The original idea for Master Canary Forging is

mentioned in [4], however, there are only works

on non-ASLR systems. I have improved on this

idea to make Master Canary Forging work even if

ASLR enabled. This is obvious when the target

architecture does not support reading from the

TLS segment because the BSS segment is always

mapped at fixed addresses. Hence, this paper

covers only the x86 64 architecture which uses the

TLS segments for reading canaries.

2 Environment

This paper assumes the following environments:

• Linux Kernel 3.19

• Glibc 2.21

• GCC 4.9.2

• x86 64

Note that Master Canary Forging runs regardless

whether or not DEP, ASLR, PIE, and RELRO are

enabled.

3 Attack Outline

Master Canary Forging consists of the following

phases:

1. Establish Mapping: Create a mapping by in-

voking mmap to make it and the TLS segment

successive.

2. Master Canary Overwrite: Overflow a buffer

in the mapping in order to forge a master ca-

nary.



3. Stack Canary Overwrite: Overflow a stack

based buffer overflow.

Therefore, Master Canary Forging requires three

conditions: the capability of calling mmap with

specific arguments, the capability of overflowing a

buffer in the mapping, and the capability of caus-

ing a stack based buffer overflow.

4 Establish Mapping

• The addr argument is NULL.

• MAP FIXED and MAP 32BIT are not speci-

fied by the flags parameter.

• –addr-compat-layout is not indicated by the

setarch command.

• The value of RLIMIT STACK is not

RLIM INFINITY.

• /proc/sys/vm/legacy va layout is set as 0.

In the mmap implementation of Linux Kernel

3.19 x86 64, if these conditions are satisfied, then

mapping addresses are computed as follows in

unmapped area topdown.

/∗ Check highest gap, which does not precede any

rbtree node ∗/
gap start = mm−>highest vm end;

if (gap start <= high limit)

goto found highest;

...

while (true) {
/∗ Visit right subtree if it looks promising ∗/
gap start = vma−>vm prev ? vma−>

vm prev−>vm end : 0;

if (gap start <= high limit && vma−>

vm rb.rb right) {
struct vm area struct ∗right =
rb entry(vma−>vm rb.rb right,

struct vm area struct, vm rb);

if (right−>rb subtree gap >= length) {
vma = right;

continue;

}
}

check current:

/∗ Check if current node has a suitable gap

∗/
gap end = vma−>vm start;

if (gap end < low limit)

return −ENOMEM;

if (gap start <= high limit && gap end −
gap start >= length)

goto found;

/∗ Visit left subtree if it looks promising ∗/
if (vma−>vm rb.rb left) {

struct vm area struct ∗left =
rb entry(vma−>vm rb.rb left,

struct vm area struct,

vm rb);

if (left−>rb subtree gap >= length)

{
vma = left;

continue;

}
}

/∗ Go back up the rbtree to find next

candidate node ∗/
while (true) {

struct rb node ∗prev = &vma−>vm rb;

if (!rb parent(prev))

return −ENOMEM;

vma = rb entry(rb parent(prev),

struct vm area struct, vm rb);

if (prev == vma−>vm rb.rb right) {
gap start = vma−>vm prev ? vma

−>vm prev−>vm end : 0;

goto check current;

}
}

}

found:



/∗ We found a suitable gap. Clip it with the

original high limit. ∗/
if (gap end > info−>high limit)

gap end = info−>high limit;

found highest:

/∗ Compute highest gap address at the desired

alignment ∗/
gap end −= info−>length;

gap end −= (gap end − info−>align offset) &

info−>align mask;

return gap end;

Looking at this, in the above case, mmap adopts

the topdown method which establishes a mapping

at the highest address in free space capable of being

mapped. On the contrary, it selects the bottomup

method if those conditions not satisfied. In either

case, a new mapped region is always adjacent to

some region which has already been mapped un-

less the highest region is unmapped. That means

that it is possible to overwrite all of the master

canary values if the mapped area for a buffer over-

flow is located in front of the TLS segment, and all

areas between them are consecutive and writable.

Although these requirements may at first seem dif-

ficult to be met, they are actually fulfilled in most

applications. This is due to the front of the TLS

segment being empty at all times unless the ap-

plication makes its own call of mmap because the

TLS segment is the second to last to be mapped

by dl allocate tls storage, and meanwhile there is

no hole created by munmap between any regions,

and the heap region, which is the last, is allocated

by another system call, sbrk. In this scenario, the

attacker must then consider how to directly call

mmap. mmap is essentially a pretty low level sys-

tem call, so few applications but some exceptions

using mmap in their code. However, there is a

widely used glibc function which calls mmap: mal-

loc. malloc is well known to deal with allocated

requests that exceed MMAP THRESHOLD bytes

by creating a new pool with mmap [5]. This trait

enables an attacker to make a heap area contin-

uing to the TLS segment if it is possible to send

specific sized allocation requests. Summarizing the

above, the conditions mentioned in chapter 3 can

be rephrased in the following:

• The capability to control allocation sizes of

malloc

• A heap based buffer overflow

• A stack based buffer overflow

5 Proof of Concept

Code 1 poc.c

/∗
∗ gcc poc.c −fstack−protector−all −Wl,−z,now,−z

,−relro

∗/

#include <stdio.h>

#include <stdlib.h>

void stack overflow(void) {
char stack buf[16];

fread(stack buf, 1, 48, stdin);

return;

}

int main(void) {
size t alloc size = 0;

size t read size = 0;

char ∗heap buf;

if (scanf("%zu", &alloc size) != 1) return −1;

if (scanf("%zu", &read size) != 1) return −1;



heap buf = (char∗)malloc(alloc size);

if (!heap buf) return −1;

fread(heap buf, sizeof(char), read size, stdin);

stack overflow();

free(heap buf);

return 0;

}

Code 2 exploit.py

print "{}".format(0x21000)

print "{}".format(0x23720)

print "a" ∗ (0x23720+0x30)

The binary is available at: https://github.com/pote

tisensei/MasterCanaryForging-PoC/.

6 Prevention

I recommend using random XOR canaries in or-

der to prevent this exploitation method and to in-

crease the sources of entropy enough to ensure that

they are truly unpredictable.

7 Conclusion

This paper describes a new exploitation tech-

nique to defeat stack canaries called Master

Canary Forging, which uses malloc to utilize

the properties of mmap to establish successive

memory mappings in order to overwrite the master

canary values. It is architecture dependent and

currently has been proven to work on the x86 64

architecture with the latest stable Linux Kernel,

glibc, and gcc. There are some other cases where

Master Canary Forging will succeed on other

architectures but is out of scope of this paper.

8 Acknowledgments

I thank Isaac Mathis for his kind and swift feed-

back and proofreading, and Yuma Kurogome who

double-checked my PoC.

References

[1] Paul Rascagneres. Stack Smashing Protector

http://www.hackitoergosum.org/2010/HES2010-

prascagneres-Stack-Smashing-Protector-in-

FreeBSD.pdf

[2] Ben Hawkes. Exploiting OpenBSD

http://inertiawar.com/openbsd/hawkes openbsd.pdf

[3] Gerardo Richarte. Four different tricks to by-

pass StackShield and StackGuard protection

https://www.cs.purdue.edu/homes/xyzhang/f

all07/Papers/defeat-stackguard.pdf

[4] Hagen Fritsch. Stack Smashing as of Today

https://www.blackhat.com/presentations/bh-

europe-09/Fritsch/Blackhat-Europe-2009-

Fritsch-Bypassing-aslr-slides.pdf

[5] malloc(3) - Linux man page

http://linux.die.net/man/3/malloc


